高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Duffing振子的机场异物自动判决算法

钟俊 邢萌 刘星 曾琦

钟俊, 邢萌, 刘星, 曾琦. 基于Duffing振子的机场异物自动判决算法[J]. 电子与信息学报.
引用本文: 钟俊, 邢萌, 刘星, 曾琦. 基于Duffing振子的机场异物自动判决算法[J]. 电子与信息学报.
Jun ZHONG, Meng XING, Xing LIU, Qi ZENG. An Automatic Decision Algorithm forForeign Objects Debris Based on Duffing Oscillator[J]. Journal of Electronics and Information Technology.
Citation: Jun ZHONG, Meng XING, Xing LIU, Qi ZENG. An Automatic Decision Algorithm forForeign Objects Debris Based on Duffing Oscillator[J]. Journal of Electronics and Information Technology.

基于Duffing振子的机场异物自动判决算法

基金项目: 国家自然科学基金(61901288)
详细信息
    作者简介:

    钟俊:男,1972生,博士,副教授,研究方向为信号与信息处理、嵌入式系统等

    邢萌:女,1997生,硕士生,研究方向为信号与信息处理,雷达信号处理等

    刘星:男,1986年生,博士,助理研究员,研究方向为序列设计及编码理论等

    曾琦:男,1982年生,博士,副教授,研究方向为无线通信系统,信号检测与处理等

    通讯作者:

    刘星 liuxing4@126.com

  • 中图分类号: TN957.51

An Automatic Decision Algorithm forForeign Objects Debris Based on Duffing Oscillator

Funds: The National Natural Science Fundation of China (61901288)
  • 摘要: 基于毫米波雷达的机场异物(FOD)检测技术具有高分辨率和低功耗的特点,但是传统恒虚警(CFAR)类检测算法在低信杂比(SCR)情况下虚警过高。该文提出一种基于Duffing振子的FOD检测算法。该算法首先利用杂波图CFAR检测算法将雷达接收机接收回波中的背景杂波初步分离,获得目标(包含虚警)的距离信息,并利用该信息构造Duffing方程,之后将此方程作为系统检测模型,输入接收回波信号,求解输出信号方差,采用方差极值法区分目标和虚警。仿真结果表明,在低信杂比情况下,即使虚警概率为10–3,该文检测算法也可以降低虚警率,实现目标与虚警的自动判决。与传统CFAR检测算法相比,该算法的检测概率高于传统检测算法且随信杂比的下降减小速度缓慢,即使在信杂比–30 dB的情况下所提算法仍然可以保持84%的检测概率。
  • 图  1  输入信号频率与输出信号方差分布关系图

    图  2  基于Duffing振子的FOD与虚警目标自动判决算法流程图

    图  3  CFAR+Duffing算法在均匀杂波环境的仿真结果

    图  4  CFAR+Duffing算法在非均匀杂波环境的仿真结果

    图  5  测试现场及雷达系统

    图  6  杂波图CFAR预处理之前实测数据

    图  7  杂波图CFAR预处理之后实测数据

    图  8  实测数据处理结果

    图  9  检测性能对比

    表  1  LFMCW雷达检测系统参数.

    参数名称参数值参数名称参数值
    带宽1.5 GHz天线增益20 dBi
    调频周期128 us水平波束宽度1.9°
    累计时间60 ms垂直波束宽度
    脉冲累计数468方位角波束宽度120°
    最远探测距离70 m向下波束宽度28°
    距离分辨率0.1 m角距12°/s
    下载: 导出CSV
  • [1] MAZOUNI K, KOHMURA A, FUTATSUMORI S, et al. 77 GHz FM-CW radar for FODs detection[C]. The 7th European Radar Conference, Paris, France, 2010: 451–454.
    [2] 王洪, 汪学刚. 机场跑道异物监测雷达关键技术[J]. 电讯技术, 2011, 51(2): 7–10. doi:  10.3969/j.issn.1001-893x.2011.02.002

    WANG Hong and WANG Xuegang. Key technologies of radar for Foreign Objects Debris (FOD) detection on runways[J]. Telecommunication Engineering, 2011, 51(2): 7–10. doi:  10.3969/j.issn.1001-893x.2011.02.002
    [3] 张思睿, 葛万成, 汪亮友, 等. 恶劣天气下可见光和红外图像融合算法设计[J]. 信息技术, 2016(6): 33–36. doi:  10.13274/j.cnki.hdzj.2016.06.010

    ZHANG Sirui, GE Wancheng, WANG Liangyou, et al. Design of the image fusion algorithm with infrared image and visible image under severe weather conditions[J]. Information Technology, 2016(6): 33–36. doi:  10.13274/j.cnki.hdzj.2016.06.010
    [4] 李华琼, 张中仅, 王雨果, 等. CFAR方法在机场跑道FOD检测中的性能分析[J]. 无线电工程, 2015, 45(9): 53–57. doi:  10.3969/j.issn.1003-3106.2015.09.14

    LI Huaqiong, ZHANG Zhongjin, WANG Yuguo, et al. Performance analysis and comparison of CFAR methods for FOD detection in airport runway environment[J]. Radio Engineering, 2015, 45(9): 53–57. doi:  10.3969/j.issn.1003-3106.2015.09.14
    [5] TOM A and VISWANATHAN R. Switched order statistics CFAR test for target detection[C]. 2008 IEEE Radar Conference, Rome, Italy, 2008: 1–5.
    [6] ZATTOUTA B, FARROUKI A, and BARKAT M. Automatic censoring detection using binary clutter-map estimation for NonGaussian environments[C]. 2007 IEEE International Conference on Signal Processing and Communications, Dubai, United Arab Emirates, 2007: 205–208.
    [7] NITZBERG R. Clutter map CFAR analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(4): 419–421. doi:  10.1109/TAES.1986.310777
    [8] CONTE E, LONGO M, and LOPS M. Modelling and simulation of non-Rayleigh radar clutter[J]. IEE Proceedings F (Radar and Signal Processing) , 1991, 138(2): 121–130. doi:  10.1049/ip-f-2.1991.0018
    [9] SCHLEHER D C. Radar detection in Weibull clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1976, AES-12(6): 736–743. doi:  10.1109/TAES.1976.308352
    [10] 邓冬虎, 张群, 罗迎, 等. Duffing振子在低信噪比雷达目标微动特征提取中的应用[J]. 电子与信息学报, 2014, 36(2): 453–458.

    DENG Donghu, ZHANG Qun, LUO Ying, et al. The application of duffing oscillators to micro-motion feature extraction of radar target under low SNR[J]. Journal of Electronics &Information Technology, 2014, 36(2): 453–458.
    [11] 杨绍清, 韩东, 贾传荧. 基于混沌特征的高分辨雷达目标识别[J]. 火力与指挥控制, 2006, 31(6): 38–40. doi:  10.3969/j.issn.1002-0640.2006.06.011

    YANG Shaoqing, HAN Dong, and JIA Chuanying. A practical method of target recognition based on chaotic feature for high-resolution radar[J]. Fire Control &Command Control, 2006, 31(6): 38–40. doi:  10.3969/j.issn.1002-0640.2006.06.011
    [12] COSTA A H, ENRÍQUEZ-CALDERA R, TELLO-BELLO M, et al. High resolution time-frequency representation for chirp signals using an adaptive system based on duffing oscillators[J]. Digital Signal Processing, 2016, 55: 32–43. doi:  10.1016/j.dsp.2016.04.008
    [13] 冀常鹏, 许素娜, 冀雯靖. 基于Duffing振子的微弱信号参数估计[J]. 重庆邮电大学学报(自然科学版), 2020, 32(2): 263–270.

    JI Changpeng, XU Suna, and JI Wenjing. Estimation of weak signal parameters based on Duffing oscillator[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(2): 263–270.
    [14] 刘海波, 吴德伟, 戴传金, 等. 基于Duffing振子的弱正弦信号检测方法研究[J]. 电子学报, 2013, 41(1): 8–12.

    LIU Haibo, WU Dewei, DAI Chuanjin, et al. A new weak sinusoidal signal detection method based on Duffing oscillators[J]. Acta Electronica Sinica, 2013, 41(1): 8–12.
    [15] 朱来普, 张陆勇, 谢文凤, 等. 基于Duffing混沌振子的微弱信号检测研究[J]. 无线电工程, 2012, 42(1): 17–20.

    ZHU Laipu, ZHANG Luyong, XIE Wenfeng, et al. Research of weak signal detection based on Duffing chaotic oscillator[J]. Radio Engineering, 2012, 42(1): 17–20.
    [16] 朱志强, 侯健, 闫晓鹏, 等. 超低信噪比调频连续波引信信号小周期态Duffing振子检测[J]. 北京航空航天大学学报, 2019, 45(10): 2069–2078. doi:  10.13700/j.bh.1001-5965.2019.0032

    ZHU Zhiqiang, HOU Jian, YAN Xiaopeng, et al. Small-scale periodic state Duffing oscillator FMCW fuze signal detection at ultra-low SNR[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 2069–2078. doi:  10.13700/j.bh.1001-5965.2019.0032
    [17] NIE Chunyan, SHI Yaowu, WANG Zhuwen, et al. A detection method of signal frequency based on optimization theory[C]. SPIE 6357, Sixth International Symposium on Instrumentation and Control Technology: Signal Analysis, Measurement Theory, Photo-Electronic Technology, and Artificial Intelligence, Beijing, China, 2006: 635701.
    [18] WANG Baoshuai and ZHANG Wei. FOD detection based on millimeter wave radar using higher order statistics[C]. 2017 IEEE International Conference on Signal Processing, Communications and Computing, Xiamen, China, 2017.
    [19] WANG Guanyu, CHEN Dajun, LIN Jianya, et al. The application of chaotic oscillators to weak signal detection[J]. IEEE Transactions on Industrial Electronics, 1999, 46(2): 440–444. doi:  10.1109/41.753783
    [20] WANG Wei, LI Qiang, and ZHAO Guojie. Novel approach based on chaotic oscillator for machinery fault diagnosis[J]. Measurement, 2008, 41(8): 904–911. doi:  10.1016/j.measurement.2008.01.001
    [21] 李国正, 张波. 基于Duffing振子检测频率未知微弱信号的新方法[J]. 仪器仪表学报, 2017, 38(1): 181–189.

    LI Guozheng and ZHANG Bo. Novel method for detecting weak signal with unknown frequency based on duffing oscillator[J]. Chinese Journal of Scientific Instrument, 2017, 38(1): 181–189.
  • [1] 王宝帅, 刘江洪, 郑小亮, 贺岷珏, 肖庆.  基于特征谱特征的机场跑道异物分层检测算法, 电子与信息学报. 2017, 39(11): 2690-2696. doi: 10.11999/JEIT170178
    [2] 刘明, 水鹏朗.  基于功率中值和归一化采样协方差矩阵的自适应匹配滤波检测器, 电子与信息学报. 2015, 37(6): 1395-1401. doi: 10.11999/JEIT140900
    [3] 毛琳琳, 张群飞, 黄建国, 史文涛, 韩晶.  基于互相关协方差矩阵的改进多重信号分类高分辨波达方位估计方法, 电子与信息学报. 2015, 37(8): 1886-1891. doi: 10.11999/JEIT141208
    [4] 郑恩明, 余华兵, 陈新华, 孙长瑜.  一种基于瞬时相位方差加权的线谱检测器, 电子与信息学报. 2015, 37(7): 1763-1768. doi: 10.11999/JEIT141347
    [5] 于洪波, 王国宏, 曹倩, 王娜.  一种高脉冲重复频率雷达微弱目标检测跟踪方法, 电子与信息学报. 2015, 37(5): 1097-1103. doi: 10.11999/JEIT140924
    [6] 张洪伦, 巴晓辉, 陈杰, 周航.  基于FFT的微弱GPS信号频率精细估计, 电子与信息学报. 2015, 37(9): 2132-2137. doi: 10.11999/JEIT150204
    [7] 张悦, 刘尚合, 刘卫东.  基于广义互相关与混沌序列预测集成算法的微瞬态电磁辐射信号检测方法, 电子与信息学报. 2015, 37(11): 2769-2775. doi: 10.11999/JEIT 150306
    [8] 邓冬虎, 张群, 罗迎, 姚赛, 李宏伟.  Duffing振子在低信噪比雷达目标微动特征提取中的应用, 电子与信息学报. 2014, 36(2): 453-458. doi: 10.3724/SP.J.1146.2013.00624
    [9] 靳晓艳, 周希元.  一种基于特定Duffing振子的MPSK信号调制识别算法, 电子与信息学报. 2013, 35(8): 1882-1887. doi: 10.3724/SP.J.1146.2012.01708
    [10] 戴舜, 方广有.  超宽带雷达生命信号频率检测的Cramer-Rao下界, 电子与信息学报. 2011, 33(3): 701-705. doi: 10.3724/SP.J.1146.2010.00643
    [11] 张路平, 王建新.  MQAM信号调制方式盲识别, 电子与信息学报. 2011, 33(2): 332-336. doi: 10.3724/SP.J.1146.2010.00472
    [12] 田斌, 朱岱寅, 朱兆达.  利用样本协方差矩阵特征值分解实现双通道SAR动目标检测, 电子与信息学报. 2010, 32(11): 2636-2641. doi: 10.3724/SP.J.1146.2009.01570
    [13] 王波, 孔祥维, 尤新刚, 付海燕.  基于协方差矩阵的CFA插值盲检测方法, 电子与信息学报. 2009, 31(5): 1175-1179. doi: 10.3724/SP.J.1146.2008.00146
    [14] 马启明, 王宣银, 杜栓平.  基于频谱幅度起伏特性的微弱信号检测方法研究, 电子与信息学报. 2008, 30(11): 2642-2645. doi: 10.3724/SP.J.1146.2007.00645
    [15] 詹双环, 张鸿宾.  基于小波分解和方差分析的图像信息隐藏盲检测, 电子与信息学报. 2007, 29(6): 1460-1463. doi: 10.3724/SP.J.1146.2005.01563
    [16] 梁军利, 杨树元, 唐志峰.  基于随机共振的微弱信号检测, 电子与信息学报. 2006, 28(6): 1068-1072.
    [17] 李永祯, 王雪松, 施龙飞, 肖顺平, 庄钊文.  基于IPPS的微弱信号检测, 电子与信息学报. 2006, 28(2): 335-339.
    [18] 李月, 杨宝俊, 邓小英, 林红波.  谐波信号频率的混沌检测方法, 电子与信息学报. 2005, 27(5): 731-733.
    [19] 李月, 杨宝俊, 谭力, 卢金, 李世哲.  微弱周期脉冲信号的取样积分-混沌系统联合检测方法, 电子与信息学报. 2003, 25(12): 1653-1657.
    [20] 李月, 杨宝俊, 杜立志, 袁野.  色噪声背景下微弱周期脉冲信号的混沌检测方法, 电子与信息学报. 2003, 25(2): 195-199.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  23
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-14
  • 修回日期:  2021-03-12
  • 网络出版日期:  2021-03-24

目录

    /

    返回文章
    返回

    官方微信,欢迎关注